Chirality- and diameter-dependent reactivity of NO2 on carbon nanotube walls.

نویسندگان

  • Kwanyong Seo
  • Kyung Ah Park
  • Changwook Kim
  • Seungwu Han
  • Bongsoo Kim
  • Young Hee Lee
چکیده

We report the density-functional calculations of NO2 adsorption on single-walled carbon nanotube walls. A single molecular adsorption was endothermic with an activation barrier, but a collective adsorption with several molecules became exothermic without an activation barrier. We find that NO2 adsorption is strongly electronic structure- and strain-dependent. The NO2 adsorption on metallic nanotubes was energetically more favorable than that on semiconducting nanotubes and furthermore the adsorption became less stable with increasing diameters of nanotubes. The adsorption barrier height shows similar dependence on the electronic structure and diameter to the adsorption energy. Our theoretical model can be a good guideline for the separation of nanotubes by electronic structures using various adsorbates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular dynamics simulations on the effects of diameter and chirality on hydrogen adsorption in single walled carbon nanotubes.

We present systematic molecular dynamics simulation studies of hydrogen storage in single walled carbon nanotubes of various diameters and chiralities using a recently developed curvature-dependent force field. Our main objective is to address the following fundamental issues: 1. For a given H2 loading and nanotube type, what is the H2 distribution in the nanotube bundle? 2. For a given nanotub...

متن کامل

Ballistic (n,0) Carbon Nanotube Field Effect Transistors' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2

Due to emergence of serious obstacles by scaling of the transistors dimensions, it has been obviously proved that silicon technology should be replaced by a new one having a high ability to overcome the barriers of scaling to nanometer regime. Among various candidates, carbon nanotube (CNT) field effect transistors are introduced as the most promising devices for substituting the silicon-based ...

متن کامل

Chirality-dependent reactivity of individual single-walled carbon nanotubes.

Electronic characteristics of a single-walled carbon nanotube (SWCNT) strongly depend on minor variations in its atomic arrangement, specifically chirality. Therefore, precise control over nanotube chirality is highly desired for their application. Theoretically, SWCNTs with different structures have different chemical reactivities, which can be further used for their chirality selection. Here,...

متن کامل

Ab Initio Study of Chirality Effects Onphonon Spectra, Mechanical and Thermal Properties of Nearly Samediameter Single Wall Carbon Nanotubes

In this paper, we have used density functional perturbation theory (DFPT) and Pseudo-potential method to calculate the phonon spectrum, phonon density of states (DOS), specific heat capacity and mechanical properties of (5,5) armchair and (9,0) zigzag Single Wall Carbon Nanotubes (SWCNTs). Our calculations show that Young’s modulusfor (5,5) and (9,0) nanotubesare higher than 1TPa. We have also ...

متن کامل

On the Mechanical Properties of Chiral Carbon Nanotubes

Carbon nanotubes (CNTs) are specific structures with valuable characteristics. In general, the structure of each nanotube is defined by a unique chiral vector. In this paper, different structures of short single-walled CNTs are simulated and their mechanical properties are determined using finite element method. For this aim, a simple algorithm is presented which is able to model the geometry o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 127 45  شماره 

صفحات  -

تاریخ انتشار 2005